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Purpose: The detection rate of breast ductal carcinoma in situ (DCIS) has increased 

significantly, raising the concern that DCIS is over-diagnosed and over-treated. Therefore, there is 

an unmet clinical need to better predict the risk of progression among DCIS patients. Our 

hypothesis is that by combining molecular signatures with clinicopathologic features, we can 

elucidate the biology of breast cancer progression, and risk-stratify patients with DCIS.

Methods: Targeted exon-sequencing with a custom panel of 223 genes/regions was performed 

for 125 DCIS cases. Among them, 60 were from cases having concurrent or subsequent invasive 

breast cancer (IBC) (DCIS+IBC group), and 65 from cases with no IBC development over a 

median follow-up of 13 years (DCIS-only group). Copy number alterations in chromosome 1q32, 

8q24, 11q13 were analyzed using fluorescence in situ hybridization (FISH). Multivariable logistic 

regression models were fit to the outcome of DCIS progression to IBC as a function of 

demographic and clinical features.

Results: We observed recurrent variants of known IBC-related mutations, and the most 

commonly mutated genes in DCIS were PIK3CA (34.4%) and TP53 (18.4%). There was an 

inverse association between PIK3CA kinase domain mutations and progression (Odds Ratio 

[OR]=10.2, p<0.05). Copy number variations in 1q32 and 8q24 were associated with progression 

(OR=9.3 and 46, respectively; both p<0.05).

Conclusions: PIK3CA kinase domain mutations and the absence of copy number gains in DCIS 

are protective against progression to IBC. These results may guide efforts to distinguish low-risk 

versus high-risk DCIS.
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INTRODUCTION

Ductal carcinoma in situ (DCIS) of the breast is a risk factor as well as a precursor lesion for 

invasive breast cancer (IBC). The current standard of treatment for DCIS involves surgery in 

combination with radiation therapy and/or endocrine therapy [1–4]. However, this treatment 

paradigm was developed based on the natural history of DCIS and IBC in the pre-

mammography screening era. In recent decades, DCIS detection rates have increased 

significantly due to contemporary, advanced screening imaging modalities [5]. Concurrently, 

multiple studies have demonstrated that only 13-52% of patients with DCIS eventually 

develop subsequent IBC [3,6], suggesting that many patients with DCIS may not require 

extensive treatment, and raising the concern that some DCIS patients are being over-treated.

Therefore, a precision medicine approach to stratify risk of developing IBC among DCIS 

patients is critically needed. The discovery of genomic features that correlate with high-risk 

and low-risk DCIS would be important for tailored IBC screening and prevention. A number 

of studies, including ours, have examined the changes in the genome during the progression 

of breast neoplasia to IBC. The findings suggest that single nucleotide variations (SNVs) 

and copy number alterations (CNAs) both are acquired over a series of genomic events that 

occurs over the course of development of the IBC [7–11].
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In our prior studies, we have examined genomic changes in hyperplasia, DCIS and IBC by 

targeted sequencing [8], whole genome sequencing[7], and fluorescence in situ hybridization 

(FISH) [12] to identify genomic changes. These studies have found recurrent genomic 

changes in pre-invasive neoplasia, both CNAs and SNVs, which have also been identified in 

IBC. Some events, like PIK3CA mutations, can occur quite early in the neoplastic timeline 

[13] while others, like ERBB2 amplification, occur later [14]. However, our hypothesis is 

that there is no single genomic feature that correlates with the transition from DCIS to IBC; 

instead, it is likely that a constellation of features or higher order features, such as genome 

complexity or gene pathway alterations, are driving progression.

In this study, we investigated the mutational profiles of DCIS cases that do not develop IBC 

over a long follow up interval (median 13 years), and DCIS cases that are initially associated 

with IBC or later develop IBC. We hypothesize that by combining molecular signatures with 

clinicopathologic features, we can elucidate the biology of breast cancer progression, and 

risk-stratify patients with DCIS.

MATERIALS AND METHODS

Patient population

Available cases were identified in the Department of Pathology at Stanford University 

Hospital (SUH) from 2000 to June 2011. DCIS cases with adequate tissue for research 

sampling and confirmed follow-up were categorized as follows: 1) DCIS-only group: DCIS 

and no development of IBC over a median follow-up of 13 years (average 11 years) or 2) 

DCIS+IBC group: DCIS with concurrent or subsequent IBC present. There is no restrain for 

the size of associated invasive cancer or the detection methods (screen-detect v.s. palpable 

mass, etc). Surgical samples with sufficient tissue were collected with Health Insurance 

Portability and Accountability Act (HIPAA)-compliant Stanford University Institutional 

Review Board (IRB) approval (Protocol number 32496). Clinical data were obtained from 

the Oncoshare breast cancer research database, which has been described previously [15,16].

Generation of Targeted-capture libraries

Hematoxylin and eosin stained slides were reviewed to confirm the diagnosis of DCIS. The 

areas with aboundant amout of DCIS were chosen for examination. For cases with DCIS and 

invasive carcinoma present in the same specimen, we carefully selected the area with 

abundant DCIS away from the invasive component. The DCIS samples were acquired by 

taking 3-10 2mm cores from the corresponding areas of paraffin blocks (from cases on tissue 

microarrays TA 239, 419, 420, and 445). The thickness of the tissue in each core is 

approximately 2-3 mm, so we do not anticipate a major contamination from invasive 

carcinoma in deeper content of the core. Only tumor samples were analyzed, and no paired 

normal samples were included. The DNA was extracted using RecoverAll Total Nucleic 

Acid Isolation kit (Ambion). Targeted libraries of genomic DNAs were generated using the 

Agilent SureSelect XT kit and Agilent Automation Systems NGS system. Additional 

information is provided in the supplementary materials and methods.
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Sequencing data analysis

The sequencing data were analyzed using a custom pipeline. In brief, reads were aligned to 

the hg19 human reference genome assembly using BWA [17]. Duplications were marked 

using Picard Tools V1.118 (http://broadinstitute.github.io/picard). Cases with less than 92M 

aligned reads were discarded. Insertion-deletion realignment and base recalibration were 

achieved using GATK v.3.3-0 [18]. The somatic variant calls were carried out using an 

ensemble approach with four variant callers: MuTect[19], VarScan2 [19], VarDict [20], and 

Freebayes [21] Calls present in at least two out four callers were accepted. The variant 

annotation was done using ANNOVAR [22] and custom scripts. The full list of 

nonsynonemous variants was provided in Supplmentary Table S6. Bedtools coverage was 

used to create a histogram of coverage for each feature in the BED file and a summary 

histogram of all of features in the BED file. These histograms were then plotted using R to 

show the percentage of capture regions covered at any given depth for every individual 

sample. The sequencing data was uploaded to the NCBI Sequence Read Archive.

Fluorescence in situ hybridization (FISH)

FISH was performed as previously described [12], and additional details is provided in the 

Supplmentary Material and Methods. Total test probe green counts (1q32.1, 8q24.21, 

11q13.11) were compared with red (2q37.3) control counts, which are frequently unaltered 

in breast cancer [24]. The signals were evaluated according to two parameters: signals per 

cell and ratio of test probe to control probes. Cases were scored as gain at the locus if the 

target to control probe ratio was greater than 1.5 or the number of test signals was greater 

than three per cell.

Statistical Analysis

Descriptive statistics were presented of baseline characteristics among the two DCIS groups 

(DCIS-only group and DCIS+IBC group). The student t-test was used to assess whether 

differences in mutation burden existed between the DCIS alone and DCIS with IBC cohorts.

Two main multivariable logistic regression models were fit to characterize the association 

between DCIS progression to IBC and clinical and demographic features. The first model fit 

DCIS progression to IBC as a function of categorical copy number status, age at diagnosis, 

race/ethnicity, DCIS nuclear grade, tumor size, margins, surgery type, and an indicator for 

lack of PIK3CA mutation in the kinase region (PIK3CA-KD). The second model 

additionally adjusted for ER+ status and HER2+ status. Odds ratios and 95% confidence 

intervals were reported. Further details on additional models fit are available in the 

supplementary materials and methods. All statistical analyses were performed in R (Version 

3.2.2, Vienna, Austria) [26].

RESULTS

Patient population and demographic data

Cases of DCIS and documented follow-up in two cohorts were identified for genomic 

studies: 1) DCIS and no development of IBC (DCIS-only group) or 2) DCIS with 

concurrent/subsequent IBC events (DCIS+IBC group). A total of 125 DCIS cases were 
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successfully analyzed, including 65 cases (52%) in the DCIS-only group and 60 cases (48%) 

in the DCIS+IBC group. In the DCIS+IBC group, 5 DCIS cases had IBC detected at a later 

time point. All patients were female, with median age at DCIS diagnosis of 51 years (range 

29-89 years, Table 1). DCIS was characterized histologically and immunophenotypically; 

more than half (77 cases, 62%) demonstrated high-grade nuclei. The median tumor size was 

2.4 cm (range 0.4-13.0 cm). The majority (72%) of cases had tumor margins of 0.2 cm and 

above. Sixty-one percent of surgeries were mastectomies. Eighty-one cases (65%) were 

positive for estrogen receptor (ER). Seventy-two cases (58%) were negative for HER2 (0, 

1+, or 2+ by immunohistochemistry), and 27 cases (21.6%) were positive for HER2 (3+ by 

immunohistochemistry). The univariable analysis of these parameters for association with 

IBC was presented in supplementary Table S2, and the detailed clinicopathologic data was 

provided in supplementary Table S7.

The genomic profile of DCIS is similar to IBC

Targeted sequencing for common mutations in IBC was performed on 125 cases of DCIS. 

The targeted regions include SNPs and coding exons of known breast-cancer/pan-cancer 

related genes, including APC, AR, ATM, BAP1, BRAF, CCND1, CHD1, CDKN1A, 
CTNNB1, DICER1, DNMT3A, EGFR, ERBB2, FOXA1, GATA3, IDH1/2, KRAS, MED12, 
MYB, NF1, NOTCH1, PIK3CA, PTEN, RB1, VHL, WT1 (full list in Supplementary 

material and methods). The average read count obtained per case was 5,604,491. Additional 

quality control data are presented in Supplementary Table S5 and Supplementary Figure 1. 

We excluded calls with coverage less than 30 reads. To focus on mutations having tumor 

suppressive or oncogenic effects, we limited the analysis to recurrent position mutations 

identified in the TCGA dataset that are frequently mutated in IBC. The most commonly 

mutated genes were PIK3CA (34.4%) and TP53 (18.4%) (Figure 1A). We observed no 

significant difference of mutational burdens in known breast cancer associated genes 

between the two groups of DCIS cases (p>0.05 for all the genes) (Figure 1B). We further 

analyzed variants based on their locations within the functional domains in each gene [27–

29]. We identified “hotspots” of somatic mutations in the helical domain and kinase domain 

of PIK3CA for both DCIS-only and DCIS+IBC groups (Figure 2). There was a significant 

enrichment of PIK3CA kinase domain mutations (PIK3CA-KD mutations) in the DCIS-

alone group (p=0.029). Analysis of other domains in PIK3CA genes found no statistically 

significant differences in recurrent mutations outside the kinase domain. Similar domain 

analysis was also performed for other frequently mutated genes, TP53 and GATA3, and no 

further predictive mutational profiles were identified.

In addition to SNV and small insertion-deletion mutations identified by targeted exon 

sequencing, we also interrogated larger-scale copy number variations in selected “hotspot” 

genomic areas in the two DCIS groups (Table 1 and Supplementary Table S1). Three 

chromosomal loci were measured by FISH, 1q32, 8q24, and 11q13, based on prior genomic 

data on invasive breast cancer [30] and DCIS [12]. The current study cohort consists of 73 

cases (58.4%) from the previously published cohort [12], and 52 new cases that have not 

been analyzed before. Consistent with our prior data, frequency of 1q32 gain is the highest 

in the cohort (59.0%), followed by 8q24 (48.2%) and 11q13 (32.5%).

Lin et al. Page 5

Breast Cancer Res Treat. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Multivariable analysis demonstrate strong correlation between PIK3CA-KD mutation and 
risk of progression

We performed multivariable analysis, examining the association of IBC dependent on 

variables including PIK3CA-KD mutational status, copy number gains, age, race, nuclear 

grade, tumor size, margins, and surgery type (Table 2). After removing cases with missing 

data, we had 97 complete DCIS cases. We identified a statistically significant association 

between lack of PIK3CA–KD mutation and increased risk of IBC (p<0.05). Patients without 

PIK3CA-KD mutations were 4.52 times (confidence interval: 1.05-25.27) as likely to have 

IBC compared to subjects with the mutation. This association was also statistically 

significant in the univariable analysis (Supplementary Table S2). When subdividing the 

DCIS+IBC group into the cases with synchronous or recurrent IBC (Supplementary Table 

S8), similar trend was noticed. The number of cases in the group of DCIS+ subsequent IBC 

is not powerful enough to draw a conclusion.

When additionally controlling for ER and HER2 status (complete case number=81, Table 3), 

the association between lack of PIK3CA-KD mutation and IBC risk remained statistically 

significant: DCIS patients without the PIK3CA-KD mutations were 10.22 times as likely to 

be progress to IBC as compared to DCIS with PIK3CA-KD mutations (p<0.05, Table 3). 

Similar results were observed when DCIS nuclear grades were grouped into a two-tiered 

system (low grade vs not low grade DCIS; high grade vs not high grade DCIS) (data not 

shown). In addition, the inverse association between any PIK3CA mutation and IBC risk 

became statistically significant (OR=4.66, p<0.05, data not shown).

The presence of genomic copy number gain (1q32 only, 8q24 only, or two or three of three 

gains) was also associated with increased risk of progression to IBC (Table 3). In addition, 

there were a trend, but not statistically significant, that overexpression of HER2 is inversely 

associated with the risk of IBC (OR= 0.28, p<0.1). This trend became statistically significant 

(OR= 0.24, p<0.05) when modeling any PIK3CA mutations instead of PIK3CA-KD 
mutations in the multivariable analysis (data not shown).

ER status and DCIS nuclear grade are important pathological features that are routinely 

examined in the clinical setting. Therefore, we investigated the interaction between ER/

nuclear grade and the PIK3CA mutation status. The association between lack of PIK3CA-
KD mutations and progression to IBC was not modified by ER status (Supplementary Table 

S3). The association between lack of any PIK3CA mutations (including PIK3CA-KD 

mutations and other PIK3CA mutations) and progression to IBC was modified by ER status 

(p<0.05, Supplementary Table S4). There was a statistically significant interaction between 

DCIS nuclear grade and the presence of PIK3CA-KD mutation for the association with IBC 

(data not shown). The effect of PIK3CA-KD mutation appeared to be dependent on the 

nuclear grade: the association with no progression to IBC was stronger in the group of high-

grade DCIS patients.

DISCUSSION

While the genomic landscape of IBC has been extensively studied [31–35], the molecular 

profiling of DCIS is still under investigation. Limited data have been published for DCIS 
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genomic profiling, using either next-generation sequencing or array CGH [9,36–41]. To our 

knowledge, this is the largest cohort of genomic profiling with longitudinal clinical follow-

up of DCIS cases that did not progress. PIK3CA, TP53, and GATA3 are among the most 

commonly mutated genes in DCIS, and chromosome 1q and 8q copy number gains are 

frequently identified in DCIS, as seen in prior studies [36–38,41]. Of note, in these previous 

reports, there was no recurrent mutation in a single gene that could stratify the risk of 

progression to IBC. However, further analysis based on protein domains was not performed 

in these previous publications.

We demonstrated a novel finding that the somatic mutations in the PIK3CA kinase domain 

provide predictive value of DCIS progression to IBC. The presence of mutations in this 

particular domain is associated with lower risk of concurrent or subsequent IBC. Previous 

studies have investigated the role of PIK3CA mutations in in situ breast cancers. In a small 

cohort of lobular carcinoma in situ (LCIS) without invasive lobular carcinoma (ILC) versus 

LCIS with associated ILC, the presence of PIK3CA mutations was not correlated with 

progression [42]. One of the studies showed that in ER-positive/HER2-negative DCIS, 

PIK3CA “hotspot mutations” were more prevalent in DCIS associated with IBC, compared 

with DCIS alone [43]. However, these “hotspot mutations” queried in this study includes 

mutations in C2, helical, and kinase domains. This difference could account for the different 

conclusion drawn in our study, as we demonstrated that specifically PIK3CA kinase domain 

mutations are associated with lack of progress.

The finding that activating mutations in PIK3CA and overexpression of HER2 oncogenes 

are correlated with a tendency not to progress to IBC is unexpected. Variants of these two 

oncogenes are quite prevalent in IBC. In cultures and animal model systems, they 

demonstrate biologic influences that promote neoplastic growth, invasion, or metastasis [44–

46]. Given that conventional models of cancer associate progression with oncogenic 

mutations, it is surprising that two prominent oncogenes would be inversely correlated with 

the progression of DCIS to IBC.

One possible explanation for our findings is that alterations in specific pathways (such as 

HER2, PIK3CA) allow the cells to overcome immediate biological constraints in the process 

of tumorigenicity, rather than specifically promoting the DCIS to IBC transition. After the 

initial biologic challenges have been overcome, their influence on progression may be 

diminished. That they remain at high incidence in the invasive carcinoma may be in part due 

to the genomic difficulty or biological ambivalence in removing these somatic changes. In 

fact, PIK3CA mutations are extremely common in hyperplastic lesions of the breast[47]. 

HER2 is often amplified in DCIS and other non-invasive breast lesions, with a higher rate of 

amplifications in preinvasive lesions than in IBC [48–51]. A large cohort study with long-

term follow-up data from Sweden showed that HER2-positive DCIS has lower risk of 

progression to IBC compared to HER2-negative DCIS [52]. Similar results have been 

reported independently [53]. For PIK3CA, previous researchers have found that in a subset 

of paired DCIS alone and DCIS with IBC samples, the PIK3CA mutations were present in 

DCIS alone but not DCIS with IBC, or with lower alternative allele frequency in the IBC 

component [39,43,54,55]. PIK3CA KD mutations (exon 20 mutations) have also been 

observed in pre-neoplastic lesions (usual ductal hyperplasia, columnar cell change, or 
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atypical ductal hyperplasia) while paired IBC lesions lack such mutations [47]. These results 

and our current findings suggest that selection for HER2 amplification or PIK3CA mutations 

may address neoplastic challenges that occur well before the transition from in situ to 

invasive cancer.

Notably, the genomic features we found to correlate with risk of progression consisted of 

aneuploides or large amplicons. While there are a number of known and suspected 

oncogenes present in the chromosomal regions with recurrent copy number alterations, it is 

not clear whether a single driving event is responsible for these somatic changes. We 

speculate that higher-order function attributable to the gross change in genomic composition 

(e.g., copy number gains that likely have widespread effects on cellular function and 

genomic instability) may influence progression rather than a more precise influence on a 

specific gene function or related pathway. This observation has also been made by other 

studies in the literature [9,56]. In our prior whole genome sequencing study, clonally-related 

progression was marked by recurrent events of aneuploidy at the earliest stages and 

successive DNA copy number events throughout progression to invasion [7].

There are some limitations of our study. First, while some associations in the multivariable 

analyses were significant, those with large confidence intervals should be carefully 

interpreted. An independent cohort is required to validate these findings. Also, more than 

half (57%) of the DCIS-only patient received mastectomy specimen. The choice of 

mastectomy over lumpectomy potentially could drastically decrease the rate subsequent IBC 

event. In deed, in our cohort, only 5 patients subsequently developed invasive disease. In 

addition, without paired normal controls, we could not reliably distinguish between germline 

and somatic events. However, we focused on ‘hotspot’ mutations with known impacts on 

protein functions, such as PIK3CA kinase domain mutations, that are easily recognized. 

Moreover, there are several other genes that are mutated at frequencies that are likely to be 

significant for a clinical classifier, such as TP53, GATA3 and MAPK3. But beyond these, 

most genes are mutated at less than 1% and are thus unlikely to be useful as clinical 

biomarkers of progression.

The strength of our cohort is the long-term comprehensive follow-up data, to ensure DCIS-

only cases were indeed without invasive or metastatic events. These cases are considered 

“low-risk” clinically. It is important to identify this type of DCIS patients, who carry low-

risk of progression and could consider forgoing extensive treatment. In this study, we 

hypothesized that the molecular signatures of the “low-risk” DCIS are distinct from the 

“high-risk” DCIS. DCIS patients with either subsequent or synchronous IBC are considered 

“high-risk.” We acknowledge that the risk of progress in the “high-risk” DCIS group may be 

heterogeneous, that DCIS with synchronous IBC have even higher risk and may carry a 

different pathological mechanism and molecular profiles compared the DCIS with 

subsequent IBC. This is an interesting, important, yet separate hypothesis that is beyond the 

scope of this current study.

Future studies are necessary to provide deeper understanding of this novel finding of the 

PIK3CA-KD predictive value in DCIS progression. Previous literature has suggested that 

different PIK3CA variants could cause different downstream signaling pathway alteration 
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and biological functions in in vitro systems [57,58]. One key goal is to map the occurrence 

and evolution of these genomic alterations in early neoplastic and precursor lesions, as well 

as in paired invasive and metastatic samples. This would help us to understand the roles of 

PIK3CA-KD mutations and copy number gains in breast cancer progression. It is also 

imperative to combine transcriptional and proteomics analyses, in order to interrogate the 

downstream effects related to the PIK3CA-KD mutations.

Our novel findings that PIK3CA-KD mutations are associated with relative lack of DCIS 

progression to IBC, coupled with other traditional and novel risk factors, contributes to 

knowledge of the sequence and mechanisms of breast cancer progression. These data also 

begin to demonstrate the possibility of an integrated clinico-pathologic-molecular risk 

classifier of DCIS. For example, women with low nuclear grade, ER+, PIK3CA-KD mutant 

DCIS may have particularly low risk of progression. Larger studies with more complete 

histologic, immunohistochemical, proteomic, molecular, treatment and long term follow-up 

data are necessary to build precision risk assessment models to counsel patients, tailor 

therapy, and reduce overtreatment of the more indolent forms of DCIS.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Genomic landscape of DCIS. (A) Distributions of known recurrent IBC-associated variants 

are (A) displayed in a bar graph with the number of cases denoted above the bars; (B) 

displayed in a heat map. In the group of DCIS+IBC, cases with subsequent IBC events are 

highlighted in the boxes.
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Figure 2: 
Distribution of PIK3CA mutations in two groups of DCIS cases. The number in the circles 

depicts the number of DCIS cases harboring the mutation in that particular position. To note, 

one of the DCIS-only cases exhibited two PIK3CA-KD variants.
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Table 1.

Baseline features of the DCIS cases

Characteristic DCIS-only (n=65) DCIS+IBC (n=60) Total (n=125)

Age at diagnosis (years)

 Less than 40 10 (15%) 11 (18%) 21 (17%)

 40-49 19 (29%) 15 (25%) 34 (27%)

 50-64 23 (35%) 23 (38%) 46 (37%)

 65 and older 13 (20%) 11 (18%) 24 (19%)

Race / ethnicity

 NH Asian/Pacific Islander 11 (17%) 10 (17%) 21 (17%)

 NH white 47 (72%) 43 (72%) 90 (72%)

 Other 6 (9%) 4 (7%) 10 (8%)

Surgery type

 Lumpectomy 27 (42%) 21 (35%) 48 (38%)

 Mastectomy 37 (57%) 39 (65%) 76 (61%)

 No surgery 1 (2%) 0 1 (1%)

ER status†

 Positive 46 (71%) 35 (58%) 81 (65%)

 Negative 10 (15%) 19 (32%) 29 (23%)

 Missing 9 (14%) 6 (10%) 15 (12%)

HER2 status†

 Positive 15 (23%) 12 (20%) 27 (22%)

 Negative 37 (57%) 35 (58%) 72 (58%)

 Missing 13 (20%) 13 (22%) 26 (21%)

Tumor size (cm)

 Median (range) 2.4 (0.4-10.9) 2.4 (0.7-13.0) 2.4 (0.4-13.0)

Tumor margins

 < 0.2 cm 19 (29%) 14 (23%) 33 (26%)

 0.2 cm + 46 (71%) 44 (73%) 90 (72%)

DCIS nuclear grade

 Low 5 (8%) 2 (3%) 7 (6%)

 Intermediate 22 (34%) 16 (27%) 38 (30%)

 High 38 (58%) 39 (65%) 77 (62%)

Copy number variations

 None 20 (31%) 5 (8%) 25 (20%)

 Gene 1q only 10 (15%) 13 (22%) 23 (18%)

 Gene 8q24 only 1 (2%) 6 (10%) 7 (6%)

 Gene 11q13 only 2 (3%) 1 (2%) 3 (2%)

 Two of three gains 10 (15%) 20 (33%) 30 (24%)

 All three gains 10 (15%) 12 (20%) 22 (18%)

Note: DCIS = ductal carcinoma in situ; IBC = invasive breast cancer; NH = non-Hispanic.

†
Equivocal is included in the negative category.
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Table 2.

Multivariable associations with DCIS progression to IBC (n=97)

Characteristic Odds Ratio (95% CI)

Copy number variations

 None reference

 Gene 1q only 5.44** (1.16, 30.46)

 Gene 8q24 only 21.92** (2.00, 603.68)

 Gene 11q13 only 1.71 (0.06, 29.98)

 Two of three gains 7.61*** (1.90, 36.86)

 All three gains 2.73 (0.58, 14.82)

Age at diagnosis

 Less than 40 0.45 (0.09, 2.17)

 40-49 0.86 (0.25, 2.88)

 50-64 reference

 65 and older 0.88 (0.21, 3.76)

Race / ethnicity

 NH Asian/Pacific Islander 1.67 (0.19, 16.46)

 NH white 1.55 (0.26, 10.58)

 Other reference

DCIS nuclear grade

 Low reference

 Intermediate 0.54 (0.05, 6.33)

 High 0.78 (0.07, 9.41)

Tumor size 1.08 (0.85, 1.40)

Tumor margins < 0.2 cm 1.61 (0.53, 5.10)

Lumpectomy 0.77 (0.26, 2.21)

No PIK3CA-KD mutation 4.52** (1.05, 25.27)

Note:

*
p < 0.10

**
p < 0.05

***
p < 0.01
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Table 3.

Multivariable associations with DCIS progression to IBC include ER and HER2 status (n=81)

Characteristic Odds Ratio (95% CI)

Copy number variations

 None reference

 Gene 1q only 9.31** (1.57, 76.66)

 Gene 8q24 only 45.96** (2.58, 1,917.18)

 Gene 11q13 only 2.89 (0.07, 83.36)

 Two of three gains 15.68*** (2.75, 129.49)

 All three gains 10.85** (1.36, 120.55)

Age at diagnosis

 Less than 40 0.32 (0.05, 2.06)

 40-49 0.78 (0.17, 3.47)

 50-64 reference

 65 and older 1.77 (0.32, 10.77)

Race / ethnicity

 NH Asian/Pacific Islander 0.91 (0.07, 12.41)

 NH white 2.74 (0.34, 28.03)

 Other reference

DCIS nuclear grade

 Low reference

 Intermediate 0.40 (0.02, 6.56)

 High 0.68 (0.03, 13.12)

No PIK3CA-KD mutation 10.22** (1.61, 101.71)

ER positive 0.57 (0.11, 2.75)

HER2 positive 0.30 (0.07, 1.23)

Tumor size 0.84 (0.59, 1.16)

Tumor margins < 0.2 cm 2.04 (0.54, 8.93)

Lumpectomy 0.83 (0.20, 3.24)

Note:

*
p < 0.10

**
p < 0.05

***
p < 0.01
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